Sugar sensing and signaling in plants

نویسندگان

  • Sjef Smeekens
  • Hanjo A. Hellmann
چکیده

Sugars are ubiquitous and critical components for general metabolism. These primary products from photosynthesis affect most, if not all, processes in plant cells by providing skeletons for organic compounds and storing energy for chemical reactions. Sugars also serve as critical signaling molecules in relation to both cellular metabolic status and biotic and abiotic stress response (Rolland et al., 2006; Lastdrager et al., 2014). The diverse and complex networks sugars are involved in warrant a detailed comprehension of their impact on regulatory and metabolic processes at the cellular and the whole plant level. The current research topic on “Sugar Signaling and Sensing in Plants” is a combination of primary research articles and review work, and provide novel insights and detailed overviews on the current knowledge of sugars as metabolites and signal molecules. The review article from Simone Ferrari and co-workers on oligogalacturonides (OGs) (Ferrari et al., 2013), illustrates an excellent example for a sugar being both a metabolite and a signaling molecule. OGs consist of α-1,4-linked galacturonosyl residues and are integral components of the cell wall. However upon biotic stresses, they can be released from the cell wall by hydrolytic enzymes activated by fungal growth or by mechanical damage inflicted through herbivores. Released OGs can then function as signaling molecules to elicit a defense response in the respective plant cell and surrounding tissues (Ferrari et al., 2013). Another aspect about sugars as signaling molecules is discussed in the article by Mohammad Bolouri Moghaddam and Wim Van den Ende that reports on the integration of sucrose-mediated signaling pathways in cellular networks. The paper discusses the interplay of sugar signals with other crucial cellular signaling systems, including the circadian clock and phytohormones, in controlling defense responses and developmental programs such as flowering (Bolouri Moghaddam and Van den Ende, 2013). Similarly, the regulatory steps that integrate diurnal signals with downstream cellular responsesmay occur at the sugar uptake step, which is indicated by the work from Chincinska and co-workers on the sucrose transporter 4 (SUT4) from potato (Chincinska et al., 2013). Another example of sugars functioning as regulatory molecules comes from the perspective article published by Dobrenel and co-workers on RAPAMYCIN (TOR) kinase complexes (Dobrenel et al., 2013). These complexes associate with additional partner proteins to affect and integrate a wide range of cellular responses, including metabolism, mRNA processing and autophagy, often in concert with nutrient signaling. Glucose has been reported as a positive regulator of TOR kinase activity and is discussed to affect diverse processes including biosynthesis of the stress-related sugar raffinose, glycolysis, and biosynthesis of sucrose and starch (Dobrenel et al., 2013). Two facets of sugar biology that have been intensively investigated and that are characteristic for many sugars, especially sucrose, are their controlled subcellular distribution and long-distance transport from sinks to sources. Cellular sucrose metabolism depends on, and is limited by, the activities of sucrose synthase and sucrose-phosphate synthase (SPS). The work from Madoka Yonekura and co-workers provides new insights on two rice SPS paralogs, OsSPS1 and OsSPS11, and their specific expressions in response to diurnal factors and carbohydrate availability (Yonekura et al., 2013). Sucrose long-distance transport is facilitated through the activities of specialized transport proteins. The work from Chincinska and co-workers investigates how these transporters may function as checkpoints to forward information on metabolic fluxes to initiate cellular responses (Chincinska et al., 2013). Another centrally important question in sugar research is related to how sugars are perceived by the cell. The best evidence on cellular sugar sensing systems currently comes from hexose kinases, which phosphorylate glucose (hexokinase) and fructose (fructokinase). Hexokinase I from Arabidopsis has been implicated in these early steps (Jang et al., 1997;Moore et al., 2003), and two complementary overview articles in this research topic provide detailed updates on hexokinases and fructokinases in plants (Granot et al., 2013; Tiessen and Padilla-Chacon, 2013), as well as on other sugar metabolizing enzymes such as invertases, sucrose synthases, and SPS (Tiessen and Padilla-Chacon, 2013). These articles discuss knowledge that has been generated on the different proteins in context with their gene families, and on what is known about their subcellular localization and specific metabolic activities, as well as impacts on developmental programs and involvement in signal transduction events. Additional regulatory steps in sugar and stress-related signal transduction depend mainly on the activity of SnRK1protein kinases. These kinases are multi-subunit enzymes, to which cystathionine-β-synthase (CBS) domain-containing proteins belong. Interesting work from Timothy Heisel and coworkers shows that two of these subunits, AtPV42a and AtPV42b, are misregulated in histone acetyltransferase 1 (hac1) mutants (Heisel et al., 2013). hac1 mutants show aberrant sugar-responses and fertility defects, which may in part be explained by the changed levels of AtPV42a and AtPV42b expression. In this context, the work from Ana Confraria and co-workers strongly implicate the participation of microRNAs in SnRK1-protein

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sugar regulation of gene expression in plants.

The molecular details of sugar sensing and sugar-mediated signal transduction pathways are unclear but recent results suggest that hexokinase functions as an important plant sugar sensor in a way that is similar to that found in yeast. The use of mutants in Arabidopsis defective in specific signaling steps is of particular importance because these give access to the genes encoding components in...

متن کامل

Sugar sensing and signaling in plants: conserved and novel mechanisms.

Sugars not only fuel cellular carbon and energy metabolism but also play pivotal roles as signaling molecules. The experimental amenability of yeast as a unicellular model system has enabled the discovery of multiple sugar sensors and signaling pathways. In plants, different sugar signals are generated by photosynthesis and carbon metabolism in source and sink tissues to modulate growth, develo...

متن کامل

Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta.

Photosynthesis is regulated by environmental factors as well as endogenous sugar signals. Whereas light-driven sugar biosynthesis is essential for terrestrial organisms, as well as belowground microflora, whether and how soil symbionts regulate photosynthesis has yet to be reported. Here, we show that the plant growth-promoting soil bacterium Bacillus subtilis GB03 augments photosynthetic capac...

متن کامل

Why and How Do Plant Cells Sense Sugars?

0305-7364/0 * For corre menico@unim The ability to sense sugars is crucial for the modulation of gene expression in plants. Despite the importance of this phenomenon, our knowledge of sugar sensing in plants is scant. Several valuable hypotheses have been put forward based on the extensive knowledge of sugar sensing in yeast. In recent years, tests of these hypotheses have shown that hexokinase...

متن کامل

The Arabidopsis CstF64-Like RSR1/ESP1 Protein Participates in Glucose Signaling and Flowering Time Control

Mechanisms for sensing and regulating metabolic processes at the cellular level are critical for the general physiology and development of living organisms. In higher plants, sugar signaling is crucial for adequate regulation of carbon and energy metabolism and affects virtually every aspect of development. Although many genes are regulated by sugar levels, little is known on how sugar levels a...

متن کامل

Effects of Elevated Carbon Dioxide on Photosynthesis and Carbon Partitioning: A Perspective on Root Sugar Sensing and Hormonal Crosstalk

Plant responses to atmospheric carbon dioxide will be of great concern in the future, as carbon dioxide concentrations ([CO2]) are predicted to continue to rise. Elevated [CO2] causes increased photosynthesis in plants, which leads to greater production of carbohydrates and biomass. Which organ the extra carbohydrates are allocated to varies between species, but also within species. These carbo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2002